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ABSTRACT
Under suitable extreme point conditions weak convergence can imply strong
convergence in Ly-spaces [28, 31, 12, 26] Here a number of such results are gen-
eralized by means of a unifying, very general approach using Young measures.
The required results from Young measure theory are derived in a new fashion,
based on pointwise averages [6], from well-known results on weak convergence
of probability measures.

1. Introduction

Let (02, 7, u) be a o-finite measure space. The following basic result for integrable
real-valued functions is wellknown in measure theory [15, Thm.II.26].

THEOREM 1.1: Let (ux) be a sequence of integrable functions u; : } — R
such that
ur = ug weakly in L} ().

Suppose that
ug(w) < li’:ninfuk(w) ae.
— 00

Then there is also strong convergence in L (p):

Hm/|uk—u0|dp=0.
k—oo jn
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The interpretation of this result is that the inequality involving the limes
inferior prevents (ux(w)) from oscillating around ug(w), a fact which forces strong
and weak convergence in £} (1) to coincide.

In more dimensions such oscillations can be suppressed similarly by an extreme
point condition for the values ug(w), 80 as to force equivalence of strong and weak
convergence. This was shown recently by Visintin {31], who gave the following
result (see also [28] for related well-known work in this direction):

THEOREM 1.2: Let (ux) be a sequence of integrable functions uj : 1 — R¢
such that

up — ug weakly in L. (n)-

Suppose that
ug(w) € 8.cl co {ux(w) : k € N} ae.

Then
lim |uk — uoldp = 0.
k—+00 0

Here 3.A denotes the set of all extreme points of a set A; cl A denotes its
closure; co A stands for its convex hull.

As shown by Visintin [31], this result can be used to obtain existence results
for partial differential equations and to obtain results on well-posedness (in Ty-
chonov’s sense) for certain variational problems [31].

A refinement of Theorem 1.2 was obtained by Rsefuchowski [25], who used
extremal faces and equivalent maximality with respect to lexicographical orders
in R cf. [23]. A recent generalisation of his result can be found in 8].

The following example, due to Visintin, shows that Theorem 1.2 is no longer
valid in infinite dimensions [31, p. 445], even with constant functions ux.

Example 1.3: Consider E := £2 X R. Let (ex) be the sequence of unit vectors in
£2, and consider the constant functions uy : 1 — E given by ux(w) := (ex, 1/k).
Then (ex,1/k) — (0,0) weakly in E, but not strongly, of course. Yet (0,0) is an
extreme point of the set d.cl co{ux(w) : k € N}.

Nevertheless, it is possible to extend the result to Bochner integrable functions
taking values in a reflexive Banach space E, as was shown in [3]. For this purpose
a notion of limited convergence in £} () was introduced, which is weaker than
ordinary strong convergence if E is infinite-dimensional, but which amounts to
strong convergence if E is finite-dimensional. The proof in [3}, based on using the
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theory of Young measures (2, 4, 29|, is rather more transparent than the proof in
[31] (an interesting survey of these two proofs plus a number of related results was
recently given by Valadier [30]). Recently, Castaing [12], following the pattern of
[3], proved an extension of Visintin’s result to a nonreflexive Banach space under
a relative norm-compactness condition for the values (ux(w)). He also gave a
related limited convergence result. Very recently, Rsefuchowski [26] obtained a
strong convergence result for the problem considered in [3), by strengthening the
extreme point condition into a denting point requirement. His method of proof
follows Visintin’s [31].

In this paper I will demonstrate that all four results mentioned above, includ-
ing the one by Rze¥uchowski, follow from one central result, Theorem 1.4, to be
stated below.

Let E be a Banach space, equipped with a norm || - ||. We shall also consider
on E a given locally convex Hausdorff topology r which is not stronger than the
norm topology, and not weaker than the usual weak topology o(E, E'). Here
E' stands for the topological dual of E; the corresponding bilinear form will be
denoted by < -,- >, as usual.

Let (ux) be a sequence in the space L} (u) of E-valued Bochner integrable
functions on (€1, 7, 4). Recall that the dual of L] (u) for the usual L'-seminorm
can be identified with the set LF[E](u) of all E'-valued scalarly measurable
bounded functions on {} (here both spaces are prequotient spaces) [18, VIL4].
The sequence (uy) is said to converge weakly to ug in L} (u) if

k]im < ux(w) — uo(w), b(w) > p(dw) =0
©Ja

for every b € L%.|E](1s). Note that then (ux) is relatively weakly compact,
and this implies by [10, Thm. 1, Remark 1] that

/ |ukllds is equi-absolutely continuous with respect to u,
)
and that for every € > 0 there exists a set F, € 7, u(F,) < +oo, such that

sup / luxlldp < e.
k Ja\F.

Recall that the definition of uniform integrability can easily be extended from
finite to arbitrary measure spaces in the following way. A sequence (¢x) C L1 (1)
is said to be uniformly integrable if for every ¢ > 0 there exists ¢. € L} (u)

such that
wp [ |buldus e
k J{|ox|>0¢}
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In particular, it follows from the above that when (ux) C L1 (x) converges
weakly, then (||ux]|) is uniformly integrable. For by [15, I1.19] there exists, for
arbitrary € > 0, a constant ¢, with

sup/ [luklldp < /2.
k JFan{lluxll2ec}
Then ¢¢ := celr,,, satisfies the definition of uniform integrability for (fjus|]).
Next, recall from appendix A that the sequence consisting of the relaxations
€y, of the functions ug, k € N, is said to be tight [2] — with respect to the given
topology r — if there exists a function & : 1 x E — [0, +00] such that
(i) for a.e. w the function h(w,-) is inf-compact on E, (i.e., for every g € R
the set {z € E : h(w,z) < B} is T-compact).
(i) supg [ Alw, uk(w))p(dw) < +oo.
Here outer integration is used (cf. Appendix A).
Based on Appendix A, it is shown in section 2 that when (ux) c LL(p)
converges weakly to ug and (e, ) is tight for the topology 7,* then not only the
classical limit property

uo(w) €NpZ; clcofux(w) : k> p} ae.
holds (by Mazur’s theorem), but also the following, much stronger property
uo(w) € cl co Ls,(ux(w)) ae.
which in case E is finite-dimensional can be strengthened further into
up(w) € co Ls(ux(w)) a.e.

Here Ls,(Xx) denotes the limes superior (in the sense of Kuratowski) of a
sequence (Xj) of subsets of E, defined by

Ls, (Xk) == ﬂ;‘;l cl, (U;’;PX,;).

When all sets Xj are singletons (say Xi = {zi}), I shall also write Ls,(z)
instead of Le,({zx}), as was done above.
The main result of this paper can now be stated:

*Such tightness will hold automatically if E is reflexive and if 7 = o (E, E'); of. Remark 2.2.
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THEOREM 1.4: Let (ux) be a sequence in L1 () such that
up —up weakly in L3 (u).
Suppose that (e, ) is tight with respect to the topology r on E and that
ug(w) € 8¢l co Ls,(ux(w)) a.e.

Then
€ = €yg-

Recall from Appendix A that by its definition the weak convergence statement
€u, = €y, means the following: for every function g : @ x E — [0, +00] such
that g(w,-) is Ls.c. on E, for a.e. w

timinf g, n(w))ilde) 2 [ glosvow))i(a)
—~e Jq o
However, rather more can be said under the present circumstances:

COROLLARY 1.5: Under the conditions of Theorem 1.4 the following are
equivalent: i. The weak convergence statement

€up = €uy-

ii. The inequality

timinf [ g(o, ue@)ido) 2 [ oo, uoe))u(a)

e Ja Y]

for every function g : 1 x E — (—o0, +00] such that for a.e. w
g(w,) is 7-Ls.c. at uo{w) relative to {ux(w) : k > 0},

g(w,") is Borel measurable on E,,

with the following bound from below
9w, z) 2 ~Cllz|| + $(w)
for some C > 0 and ¢ € L} (u).

Proof: Of course, (ii) immediately implies (i). The converse follows by Proposi-
tion A.9. a
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Consequently, for E := R? Visintin’s Theorem 1.2 follows directly from The-
orem 1.4: simply use g(w,z) := —|z — ug(w)| in the above corollary, and note
that (4, ) is automatically tight, since sup; [ A(-, ux)du < +oo for h{w, z) := |z|
(cf. Remark 2.2).

2. Proof of the Main Result

In this section Theorem 1.4 will be proven, using the Young measure theory
developed in Appendix A.

Let me note beforehand that by the Pettis measurability theorem [16, IL1]
there corresponds to each u; a null set Nj such that u;((2\N;) is a separable
subset of E. Then, clearly, the closure of the linear span of all ux(2\Ni), k € NU
{0} is a separable Banach space, to which all considerations can be restricted. Of
course, this means that I may suppose the Banach space E itself to be separable.

As a consequence, Ej|.|| is a Polish space, so E, is a Suslin locally convex space
and B(E)) = B(E,) = B(E,) by [27, Cor. 2 of Thm. IL10] (or by an easy
ad hoc proof). Thus, one need not distinguish between 8(E.) and B(Ey), or
between P(E,) and P(Ej.)-

Recall that the barycenter bar v € E of a probability measure v € P(E) is
defined by

bar v := /E:w(dz),

provided that it exists, i.., provided that [; ||z||lv(dz) < +co. The key to my
proof of Theorem 1.4 is the following simple and intuitively appealing lemma (3]
(under additional compactness conditions this result is well-known in Choquet
theory).

LEMMA 2.1: Suppose that for v € P(E)
bar v € 8.{rm cl co suppv).

Then v is the Dirac measure concentrated at the point barv € E.

Proof: For every closed convex D C E with bar v € D one has v(D) = 0. For
if it were true that v(D) > 0, then surely ¥(D) < 1 (or else the barycenter
of v would Lie in D). Hence, v = v(D)y; + (1 — v(D))va, where v;,13 €
P(E) are defined as the normalized restrictions of v to D and E\D respectively.
Thus, one would then find bar v = v(D) bar v; + (1 — v(D)) bar vz. So by
the extremality property of bar v this would imply bar » = bar v;. But this
contradicts the assumption bar v ¢ D, as bar v, belongs to the closed convex
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set D. In particular, I conclude now that every closed ball in E not containing
bar v has measure sero under v. So the same holds then also for open balls.
Finally, then, it follows by second countability of Ejj. that the norm-open set
E\{ bar v} has measure sero under v. O

Proof of Theorem 1.4: Let (I} be an arbitrary subsequence of (k). By Theo-
rem A.5 there exist a subsequence (m) of (I) and a Young measure 6. € R, (1)
such that

€um ES b..
By Corollary A.2 this gives
(2.1) supp 6. (w) C Ls,(um(w)) € Ls,(ux(w)) a.e.

By Proposition A.8, applied to the function g(w, z) := ||z|| (note that the norm
functional is 7-Ls.c.), it follows that

L1 el @) @slutao) = 1,6 < sup L) < 4o
Consequently, bar é,(w) has to exist a.e., and of course now
bar 6.(w) € cl co Ls, (ux(w)).

Since E, is Suslin locally convex, there exists a countable collection {z_’,} in E'
which separates the points of E [13, II1.31]. I apply Lemma A.7 to ¢'(w,z) :=
1p(w) < =,2} >, for arbitrary B € 7 and j € N. As (||ucf]) is uniformly
integrable (section 1), it is easy to see that both ¢’ and —¢’ satisfy the conditions
of that lemma. Therefore,

Iy(s.) = m]-i{nw Iy (eu,n)-
By the weak convergence of (ux) to ug this gives
L1 <22 > 8@ @@lu@) = [ < uow),; > u(ao),
B JE B
o, B being arbitrary, I conclude that for every j
< bar 6, (w), 2} >=< uo(w),z; > a.e.
Because (z);) separates the points of E, it follows that

bar 6, (w) = uo(w) a.e.
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[Let me pause briefly to observe that by (2.1) this means that
uo(w) € ¢l co Le, (um(w)) ae.
and for finite-dimensional E by [24] even

ug(w) € co La,(uy(w)) aee.
as I already stated before.]
By Lemma 2.1, in view of the extremality hypothesis, the above implies
bu{w) = €yo(w) ace.
It has now been established that every subsequence (I) of (k) contains a further
subsequence (m) such that
€um 8 €ugs
whence a fortiors
eum e euo

by Proposition A.8. Thus, the sequence (¢,,) a8 a whole must converge weakly
0 €y, - O

An interesting open question i8 whether the weak convergence result of The-

orem 1.4 can be strengthened into a result on K-convergence:
€ur 2 €uo-

Remark 2.2: In case E is reflexive and r = o(E, E'), two improvements can be
introduced in Theorem 1.4 and its corollary.

First, in this case tightness is an automatic consequence of the uniform inte-
grability of ([luk||) (which, in turn, is a consequence of the weak convergence of
(ux) to uo; cf. section 1). For obviously

sup Tn(eus) = sup [ Jueldis < +o0
k k Ja

will hold for h(w, z) := ||z||, which is then inf-compact in z.

Second, Corollary 1.5 can then be strenghtened as follows: Instead of

g(w,-) is Ls.c. at up(w) relative to {ux(w) : k > 0},
it i8 enough to require
g(w,-) is sequentially Ls.c. at ug(w) relative to {ux(w): k > 0}.

Indeed, since E is a Suslin locally convex space, E' iz separable for o(E', E)
by [13, IIL.32]. So by Smulian’s thecrem [17, 3.2] it follows that sequential and
ordinary compactness in E, are the same. Therefore, for every € > 0 the function

ge := g + €h satisfies the conditions of Lemma A.7. An obvious limit argument,
in which € goes to sero, then leads to the desired result.
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Remark 2.3: When 7 is the norm-topology on E (as is the case for finite-
dimensional E), it is interesting to observe that the convergence result ¢,, =
€u, of Theorem 1.4 is equivalent to

(ux) converges locally in measure to uo.

This is seen by applying the definition of weak convergence to the function

-1 f weD and|flz— up(w)] =€
0  otherwise

d%ﬂ={

for arbitrary D € F,u(D) < +oo, and € > 0. This gives the desired local
convergence in measure:

lim sup y({w € D : [[us(w) — wo(w)|| 2 e}) < 0.

Conversely, given such local convergence in measure, every subsequence of (u)
has a subsequence converging a.e. to up, which makes the proof of lower semi-
continuity for the desired integral functionals a simple application of Fatou’s
lemma.

Remark 2.4: Remark A.6 implies that Theorem 1.4 remains valid if one works
with different, w-dependent topologies 7, on E (which itself may have w-dependent
norms), provided that E is a separable Banach space, and for each w the topol-
ogy 7. on E is not weaker than the weak topology and not stronger than the
norm topology.

Theorem 1.4 can immediately be generalized into a version for a sequence of
scalarly integrable functions (u;). Suppose that E is a Banach space with norm
[| - | and with a locally convex Suslin topology r, not stronger than the norm
topology and not weaker than the topology o(E, E'). Then by (13, II1.32] the
dual E' of E, has a countable subset (z};) which is o( E’, E)-dense in the unit ball
of E'. Let L} (u)[E'] be the set of all scalarly sntegrable functions u : @ — E,
i.e. such that

< u(’),z >€ Lk(p) for every ' € E'.

THEOREM 2.5: Let (ux) be a sequence in L} (u)[E'] such that for every
JEN,BEe ¥

lim [ <ux—uo,z;>du=0.
k—oo Jjp
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Suppose that (ux) is tight with respect to the topology r on E and that

uo(w) € 3¢l co Ls, (ux(w)) a.e.

(2.2) Ls(ux(w)) is either norm-separable or r-compact a.e.

Then
€u), == €uy-

Proof: The proof is almost the same as that of Theorem 1.4. The only real
difference lies in the barycentric argument involving Lemma 2.1. Here existence
of the barycenters bar 4,(w) can only be guaranteed thanks to the provision
(2.2) (this is the sole raison d’étre for that condition), whereas in the proof of
Theorem 1.4 one could assume without loss of generality that E is separable.

COROLLARY 2.6: Under the conditions of Theorem 2.5 and the additional

condition
(lux]l) is uniformly integrable

the following are equivalent:
i. The weak convergence statement

€up = €uo
ii. The inequality
timiaf [ 5o, wn(w)u(d) 2 [ oo, ualou(de)
for every function g : @ X E — (—o0,+o00| such that for a.e. w
9(w, ") is r-Ls.c. at ug(w) relative to {ux(w) : k > 0},

g(w,-) is Borel measurable on E,,

with the following bound from below
9(w,z) 2 ~Cllz|| + $(w)

for some C > 0 and ¢ € L ().
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The proof of this corollary is quite analogous to that of Corollary 1.5, and will
be omitted.

3. Applications

In this section I shall apply Theorems 1.4 and 2.5 to problems considered by
myself [3], Castaing [12] and Rsefuchowski [26].

My first application is a refinement of the infinite-dimensional extension in |3,
Thm.1] of Visintin’s result.

PROPOSITION 3.1: Suppose that the Banach space E is reflexive, and let (ux)
be a sequence in L} (u) such that

ur —ug  weakly in L(p).

Suppose that
uo(w) € 8.cl co Lsy (ue(w)) a.e.
Then
Jim [ g0, us(6) — vow))u(ds) =0

for every ¥ x B(E,)-measurable function g : } X E — R such that for a.e. w
g(w, ) is sequentially o(E, E')-continuous at ug(w)relative to{ui(w) : k > 0},

g(w,O) = 01

with the following bound:

l9(w, z)| < Clizl| + ¥(w)
for some C > 0 and ¢ € L} ().

Proof: Take r := ¢(E,E’). In view of Remark 2.2 the result follows directly
from applying Corollary 1.5 to both g and —g. ]

In comparison to [3], the following improvements have been made: (i) the
extreme point condition is slightly relaxed (this possibility, which is implicit
in the proof of [3], was already signaled by Valadier in [29, thm.21]), (i) the
continuity condition has been localized.

Next, I show how Theorem 1.4 implies a very recent result by Rszefuchowski
(26]. (His method of proof follows Visintin’s original proof in [31].)
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Recall that for D C E an element zg € D is said to be a deniing posnt for D
(16, p. 270] if
zo & cl co (D\B(zo;€)) for all € > 0.

Here B(zo;€) ;= {z € E : ||z — zo|| < €}. The collection of all denting points of
D c E is denoted by 94D; it is simple to show that always

34D cao.D.

PROPOSITION 3.2: Suppose that the Banach space E is reflexive. Let (ux)
be a sequence in L1 (u) such that

up — up  weakly in L} (p).

Suppose that
up(w) € dy4cl co {ux(w) : k> 0} ae.

Then strong convergence in L}(is) holds:

tim, [ fus — wol: s =o.
k—o0 Q

Only the first part of the following characterization of denting points will be
used in the proof of the above result (the second part serves as a completion).
See also [14, Prop. 25.13|, [23,30] .

LEMMA 3.3: (a) Let D C E,z0 € D. Then zo € 34(D) implies that the
identity mapping ¢ : E, — E)|| is continuous at zo, relative to D.

(b) Let D C E be closed convex, zo € 3.(D). Suppose that D N clB(zo;€o) is
weakly compact for some ¢g > 0. Then the converse of the implication in a is
also true.

Proof: (a) Let ¢ > 0 be arbitrary. By dentability, it follows from the Hahn-
Banach theorem that there exists an open half-space H C FE such that H 3 z,
and E\H D D\B(zo;¢). Evidently, this means that ||z — zo}| < € for all z in the
relative weak neighborhood H N D of z,.

(b) Let 0 < € < € be arbitrary. Define Dy := D N cl B(zo;¢); then Dy is
weakly compact; also, o € 3.Do. By [14, 25.13|, 2o has, relative to Do, a
weak neighborhood basis consisting of open half spaces. By the continuity prop-
erty of the mapping ¢, the point zo has, relative to D, a neighborhood basis
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which consists of weakly open sets. Hence, there exists an open half space Hy,
containing %o, such that Ho N Dy C B(zo;€) N D. The result is now a direct
consequence of the following observation: if z € Ho N D has ||z — zo|| > ¢, then
y := zo + (2 — z0)/||z — Zo|| belongs to Ho N (Do\B(zo, €)) (since such y cannot
exist, it follows that D\ B(zo, €) is contained in E\Ho). a

Proof of Proposition 3.2: . Corollary 1.5 can be applied, with r = o(E, E'), for
by Remark 2.2 the tightness condition holds and the extreme point condition is
fulfilled, thanks to the denting point condition for the values of uqy. By this corol-

lary, applied to the function g(w, z) := —||z — uo(w)||, the result follows. (Note
that by Lemma 3.3a g satisfies the local lower semicontinuity of Theorem 1.4).
a

In Proposition 3.2 it is not enough to have the denting point condition
ug(w) € 94¢l co Ls, (up(w)) ae.,

as was pointed out to me by M. Valadier in response to an earlier, erroneous
version of that result. For instance, consider £2 with the basis of unit vectors (¢x).
Then for constant functions u; = 0 and ugx; = ¢ one has weak convergence
to 0 — assuming the measure space is finite — and even Ls) (ux(w)) = {0} a.e.;
yet strong convergence does not hold. This example comes from [1].

Next, I state a new result for a separable Banach space E, equipped with a
topology r which is not weaker than o(E, E') and not stronger than the norm-
topology. It includes also a result of Castaing [12, Thm.2.1]. Before stating
it, I recall that D C E is said to be r-compact with respect to closed balls if
D cl B(0;B) is r-compact for every g > 0.

PROPOSITION 3.4: Let (ux) be a sequence in L} (i) such that

ur —»up  weakly in Li(u),

Suppose that
ug(w) € 3.¢cl co Ls, (ux(w)) ae.

and

cl, {ux(w) : k € N} is r-compact with respect to closed balls a.e.
Then
lim | 9w, us(w) - o(w))u(dw) =0

k—o0
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for every ¥ x B(E,)-measurable function g : 1 x E — R such that for a.e. w
g(w) is r-continuous at ug(w) relative to {ux(w) : k > 0},

g(w,O) =0,

with the following bound:

l9(w, z)| < Cllz|| + ¥ (w)
for some C > 0 and ¢ € L1.
Proof: Apply Theorem 1.4. Define

lz|| if z€ cl{ux(w): ke N},

+oo otherwise

M%ﬂ={

Then for every w the function h(w,-) is inf-compact (note that for every f € R
the set {z € E : h(w,z) < B} is compact, being the intersection of the set
cl{ux(w) : k € N} and cl B(0; B)). Hence, the tightness condition of Theorem 1.4
is fulfilled because of

sup In(u,) = sup / lluklds < +oo.
kEN k (1]

The remaining details, which go as in the proof of Proposition 3.1, are left to
the reader. O

Note that in [12, Thm.2.1] compactness is required instead of of compactness
with respect to closed balls, and £ is supposed to be separable. Moreover, some
measurability and convexity conditions used in [12] have been removed.

I now discuss an application to the scalarly integrable case, which captures [12,
Thm.2.2]. Here E is the dual of a separable Banach space F; the norm on E is
the dual norm with respect to F. Let us equip E with the topology 7 of uniform
convergence on compacta (since the closed unit ball U of E is metrizable and
r-compact, E, is a locally convex Suslin space). Note that on U the topology 7
equals the weak star topology o¢(E, F).

PROPOSITION 3.5: Let (ux) be a sequence in L} (u)|F] such that

ur —ug  weakly in Li(p)[F].
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Suppose that
uo(w) € ccl co Lay(e,F)(uk(w)) ae

and that for some scalar function g € L1, (p)
{ur(w) : keN} C g(w)U ae.

Then

€up =P €yq.

Proof: Apply Theorem 2.5 with r := o(E, F). By the Alaoglu-Bourbaki theorem
the set cl co {ux(w) : k > 0} is r-compact for a.e. w. Hence, (¢4, ) is tight, as is
seen by using h given by
] if z € cl co {ux(w) : ke N},
h(w,z) = )
+oo otherwise.

The result then follows immediately. Cl

Finally, I give the following regularity result (in the sense of well-posedness &
la Tychonov). This result, stated for a Banach space E, generalizes {31, Thm.8].

THEOREM 3.6: Let f:{l x E — [0,+o0| be ¥ x B(E)-measurable and such
that for a.e. w the function f(w,-) is o(E, E')-inf-compact and strictly convex.
Also, let b € LE[E](u) be given, and consider the minimisation problem (P):

in J
2 (u),

where
J(u) = /n F(w, u(w))(dw) — /n < u(w),bw) > p(dw).

Suppose that f has the following superlinear growth property: for every € > 0
there exists Y € Lk (u), ¥ > 0, such that for ae. w

lall 2 pelw)  implies ef(w,3) > |z}l

Then the infimum value ¢ of (P) is attained by a unique u. € L} (u). Moreover,
if t < +oo then for any minimising sequence (ux) for (P) the following strong
convergence results hold:

[ o) = v @)l s) =,
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[ 176w, = flw, (o)) .

Proof: If + = +00, every u € L}(u) is optimal. So suppose from now on that
¢ < +00. Let (ux) be any minimising sequence, and let (I) be any subsequence
of (k) (so (w) is also minimising). Then by [6, Thm.4.1] () contains at least
one subsequence (m) such that (u,,) converges weakly to some u, in L1 (1).*
Moreover, since J is evidently strictly convex and strongly Ls.c. on L} (), it
must also be weakly Ls.c. This shows that ¢+ = iminf,, J{up) > J(u.). Note
that the minimising u, must be unique (by strict convexity}).

But one gets more than that: the same reasoning leads to

i | 7w, (D)) 2 [ 10,02 0)) ()

for every B € 7. By the obvious convergence

h,:n/n 7y um())dp = _./n <bu.>dp= /n F(yue())dp
it also follows that (f(-, um())) converges weakly in L} (1) to f(-,us(-)). So now

(ms (2 Um ()} = (vs, f(yue () weakly in Ly n(s).

For a.e. w it is evident, by strict convexity of f(w, ), that (u.(w), f(w, u.(w)))
is an extreme point of the epigraph of f(w, ), which itself is closed and convex.
Thus, one certainly has

(%a(w), flw, va(w)) € B €l co Loy ((um(:), f(w, um(w)))  ae.

Using Theorem 1.4, I now conclude that every subsequence (I) of (k) has a further
subsequence (m) for which

(4 £y tm())) = (e, f(-yua("))  strongly inlyyp,

and this implies the desired strong convergence result of (ug, f(-, ux())) to
(uay £y 8e())- 0

*This generalises a result known as Diestel’s theorem; the proof in [6] is again based on K-
convergence — but of another type.
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Appendix A. A New Introduction to Young Measure Theory

In this appendix I present basic Young measure theory, in particular the weak
convergence topology and the notion of tightness, from a new perspective: I de-
rive these results from the classical theory for weak convergence of measures by
means of K-convergence, a general, unifying notion of convergence for scalarly
measurable functions introduced in [6,5]. Young measures are scalarly mea-
surable functions, taking as their values ordinary probability measures. Since
K-convergence concerns the pointwise convergence of arithmetic averages of
Young measures, this has an obvious advantage for the reader: only some basic
familiarity with weak convergence of probability measures [11,15] is expected,
instead of knowledge of siseable parts from functional analysis and measyre the-
ory.

The framework of this appendix consists of the o-finite measure space (Q2, 7, u)
encountered in the main text, and of a completely regular Suslin space S (recall
that a Suslin space is the continous image of some Polish space [13,15,27]. The
set of all probability measures on (S, B(S)), is denoted by P(S); here B(S)
stands for the Borel o-algebra on S. Recall that the support supp v of v € P(S)
is defined as the intersection of all closed sets F C S with ¥(F) = 1. Recall
also that a sequence (or generalised sequence) (vx) in P(S) is said to converge
weakly (or narrowly) to the probability measure vy (notation: v = vg) if

m [ cdye= / cdyp for every c € Cy(S).
s s

k—+o00

Here Cy(S) stands for the set of all bounded continuous real-valued functions on
S. The following result is a consequence of the definition of the weak convergence
topology.

PROPOSITION A.1: Suppose that vy => vo in P(S). Then

liminf | gqdys > / qdvo.

k—oo Jg s

for every measurable function ¢ : S — (—o0, +00| such that
g is Ls.c. at every point of supp vy

relative to U2 jsupp v, and

¢ is bounded from below by a constant.
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Proof: Define Sp := U2, suppvi. Observe that S; is a completely regular
Hausdorff space for the relative topology. Let §: So — (—o0, +oo] be the Ls.c.
hull of g relative to Sy, i.e. the largest l.s.c. function on Sy nowhere larger than
g. Then by the fact that Sg O supp v, k € N U {0} and by [15, IIL.55]

hmmf/ gdvx 2 lim inf gdvg 2/ Gdug.
k s k Js, So

By hypothesis, vo({s € Sp : g(s) = g(s)}) = 1. This leads to

/ GdVo=/ quo=/quo,
So So 8

since Sp D suppwrp. Thus, the inequality has been proven. )

COROLLARY A.2: Suppose that vx = v in P(S). Then
supp vg C Ls(supp vx).

Moreover, if for some sequence (x;) C P(S)

1 n
- E X = Vo,
n

k=1

then
suppyp C Ls (supp ni).

Proof: Define S, := U,‘:’:psupp vi. Apply Proposition A.1 to the l.s.c. function
gp : S — {0,4+00},p €N, given by

0 ifse€clS,
400 otherwise.

%) = {

This gives |, s Gp: dvo = 0. Therefore, vo( cl Sp) = 1, which amounts to suppry C
clS,.

Secondly, for (x3) as stated one has 3°,_ xx/(n—p+1) = vy for every fixed
p € N; hence, just as proven above,

supprp C cl Ug , supp #x,

since supp(}_;_, ®/(n ~ p+ 1)) C clUZ_, suppxs. The desired result then
follows directly. O
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Let me make the following observation: Because the space S is completely
regular, the functions in Cy(S) separate the points of P(S) [15, IIL.54]. Since
P(S) is also Suslin [27, Appendix, Thm.7], there exists a countable subset (c;)
of Cp(S) whose functions still separate the points of P(S) [13, IIL.31]. From the
same fact it follows by [15, II1.66] that every weakly compact subset of P(S) is
metrizable, whence sequentially weakly compact.

In the terminology established by LeCam [21], a sequence (v«) in P(S) is said
to be tight if for every ¢ > 0 there exists a compact subset K, of S such that

sup vk (S\K.) <,
k

or, equivalently, if there exists a function h : § — [0, +o00] such that

(i) h is inf-compact on S,

(ii) supy fg hdvk < +oo.

The following result can be found in [11, Appendix III, Thm.6] (it also follows
by [15, 11155}, taking into consideration the above remark on sequential weak
compa,ctness).

THEOREM A.3 (PROHOROV): Suppose that the sequence (i) in P(S) is
tight. Then there exist a subsequence (m) of (k) and a probability measure
v« € P(S) such that v,, = v..

A Young measure with respect to 2 and S is defined to be a transition prob-
ability with respect to (0, ) and (S, B(S)) [22, IIL.2]; that is to say, a Young
measure is a function § : @ — P(S) which is measurable with respect to the
o-algebra 7 on 1 and the Borel g-algebra on P(S) corresponding to the weak
convergence topology (the equivalence of this with the usual definition as in [22]
follows by an easy monotone class argument; cf. [13, p. 103]. The set of all
Young measures with respect to {1 and S is denoted by Rs(u). Particularly im-
portant are those Young measures which are associated to measurable functions
u: {1 — S. In such a case the corresponding Young measure is denoted by ¢,; it
is given by

€u(w) ;= Dirac measure at u(w).

The Young measure ¢, : 1 — P(S) is called the relaxation of the measur-
able function u : 1 — § (the seminal idea of completing the class of ordinary
measurable functions in this way is due to Young [32]).

In this paper weak convergence of Young measures will come about as a
byproduct of a new, stronger notion, called K-convergence. The origins of this
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notion lie in the following deep result by Komlée [20], which is valid for an
arbitrary measure space ({1, ¥, ).

THEOREM A.4 (KOMLGS): Suppose that (¢y) is a sequence in L} () such
that

sup / 6] dp < +o0.
k JO

Then there exist a subsequence (m) of (k) and an integrable function ¢. € L1 (i)
such that for every subsequence (m;) of (m)

%Z bm; (W) — $u(w) ae

i=1

(the exceptional null set may depend upon the subsequence considered).

Following [6], a sequence (§x) in Rs(p) is said to K-converge to the Young
measure §o (notation: & 5 bo) if for every subsequence (k;) of (k)

% Y i) > bolw) 2.

=1

Note already that this entails

supp fo(w) C Ls (suppdi(w)) ae.

by Corollary A.2. Other elementary consequences of K-convergence, connected
with weak convergence in R s(u), will be given shortly.

Following [6] a sequence (8x) in Rs(u) is said to be tight (alias B-tight [29])
if there exists a function A : {1 x § — [0, +oo] such that

(i) h(w,-) is inf-compact on S for a.e. w,

(i) supy J;; (8k) < +oo.

Here the following shorthand notation is used:

56) = [ 1] bws ) 5} @o)lufan)
where [ denotes outer integration, which is recalled next:
For any — possibly nonmeasurable - function ¢ : 1 — (—o0,+00| the outer

integral of ¥ over ({1, 7, us) is defined by:

[ awi=int( [ gdu: s Lhin) 626 ac).
(9] (4]
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Here the infimum over the empty set equals +00 by definition.
Therefore, part (ii) of the above definition amounts precisely to the following:
there exists a sequence (¢o k) in L () such that for every k € N:

(A.1) 0< /;h(w, s) x(w)(ds) < dou(w) ae.
and
(A.2) s:p/n do,k dp < +oo0.

Let me note as an aside that an equivalent definition of this form of tightness
can also be given. Namely, by [19, Thm.2.4] (8) is tight if and only if for every
€ > 0 there exists a compact-valued multifunction T’ : @ — 2% such that

sup [ " 54(w) S\ (w))u(de) < e.

The following extension of Prohorov’s Theorem A.3 to a criterion for relative
compactness for K-convergence in R g(u) was obtained in [6, Thm.5.1]. It forms
a most important tool in this paper.

THEOREM A.5: Suppose that the sequence (6;) in Rs(u) is tight. Then

there exist a subsequence (m) of (k) and a Young measure 6, € Rs(u) such that
bm 2> bu.

Proof: Let (c;) € Cp(S) be the separating set for P(S) defined before. By the
fact that (£, 7, p) is o-finite, there exist strictly positive functions in L}, (1). Let
# be one such function. For 7,k € N I define

$ia(0) = 3(0) [ es(e) ufw)(do)
s
and I take (¢ x) as in (A.1)-(A.2). Then it is clear that for every j € NU {0}
sul:p/n |@5,k| dps < +o0.

This makes it possible to apply Theorem A.4 repeatedly in a diagonal procedure
(observe here the importance of the subsequence character of Theorem A.4).
This yields a subsequence (m) of (k) and a sequence ($;.) C L} (1) such that
for every 5 € NU {0} and every subsequence (m;) of (m)

1 n
n Zd’fvm-'(“’) — ¢i.(w) ae
i=1
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Now this entails that for every subsequence (m;) for a.e. w:

(A.3) hmsup— / h(w, 8) by (w)(ds) < do,o(w) < +o0,
and
(A4) Jim 2 Z [ es(6) () (ds) = 500 /BC0)

for every j € N (here (A.3) follows by (A.1), and the identity results from
dividing by ¢(w) and the above). Let us see first what this gives if (m) itself is
considered as the subsequence in question. Fix w € ] outside the exceptional
null-set. Define (v,) C P(S) as follows:

2':: ().

Then (v,) is tight in P(S), according to (A.3). By Prohorov’s Theorem A.3 there
exist at least one weakly convergent subsequence of (v,,), and a corresponding
limit point v.. Then by (A.4)

:It—

(A.5) / ¢;jdve = ¢j«(w) for every j € N.
s

But by (A.4) for any other weakly convergent subsequence of (v,) the corre-
sponding limit point will also have to satisfy (A.5). Since this equation uniquely
determines the probability measure v,, it follows easily from (A.3) by Prohorov’s
theorem that the whole sequence (v,) converges weakly to 6,(w) := v, € P(S).
By taking for 6,(w) a fixed probability measure if w belongs to the exceptional
null set in (A.3)-(A.4), I obtain the desired Young measure §,. This whole ar-
gument can be repeated verbatim if I start out with an arbitrary subsequence
(m;) of (m). Note that, except for a possible shift of the exceptional null set (for
which the statement of the theorem allows), the crucial relation (A.5) still will
hold, regardless of the choice of subsequence. O

Remark A.6: From the pointwise nature of the above proof it is clear that in
Theorem A.5 one can even allow for varying, w-dependent topologies on S (and
hence w-dependent weak topologies on P(S)). Of course, the sequence (c;) can
then also vary with w; cf. [6].
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For any function g : 1xX S — (—o00, +00], measurable in its second variable and
bounded from below by some function in L} (1), the outer integral functional
I; : Rs(u) — (—o0,+00] is defined by:

56) = [1 otw,e)8(0)(ds)lu(ao),
and in case outer integration can be replaced by ordinary integration I shall
simply write I(§).
An easy property of K-convergence is contained in the following Fatou-like

lemma:

LEMMA A.7 (FATOU’S LEMMA FOR K-CONVERGENCE): Suppose that
K . .
6k — 60 in Rs(u). Then

limint I3 (6) > I} (f)
for every function g : 2 X S — (—o0, +00] such that for a.e. w,
g(w,) : § — (—o0,+00] is Ls.c. at every point ofsupp 6o(w)
relative to Ug> osupp(8i(w)),
g(w,") : § — (—o0,+00] is measurable on S,

and such that
g(w,s) > ¢x(w) for all s € supp 6x(w)

for some uniformly integrable sequence (¢x) C L (p).

Proof: There exists a subsequence (I) of (k) such that the limes inferior, say
@, equals lim; I;(6;). Application of Komlés’ Theorem A.4 to the sequence (¢;)
gives that there exist a subsequence (m) of (I) and ¢. € L such that

(A.6) lim 1 Z dm(w) = du(w) aee.

n—oo n

Hence, by uniform integrability, it follows from the dominated convergence the-

orem that
1 n
22 [ bmds = [ b,
nm=1 0 a
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so it follows that

a- [ bodu= lim 2 i/n‘(g...—qu)dn.

m=1

By Proposition A.1
H,ﬂig gm(w) > 90(“")’ a.e.

so by (A.6),

minf = ) (0m(0) ~ bm)) 2 2o0) ~ b f0) 2

Here gm(w) := f; 9(w, 8)6m(w)(ds) > ém(w). Therefore, by Fatou’s lemma

a"/;‘f’tdﬂz/(.)‘(90—¢-)d#=/‘:god#—/‘;¢‘dﬂ

(it can be seen from the definition that outer integration is subadditive, and that
Fatou’s lemma - in the present orientation — continues to be valid). 0

In the remainder of this appendix I connect K-convergence in Rg(u) with
the weak convergence topology for Young measures [9,2,7], which is defined as
follows: A sequence (or generalized sequence) (6x) in Rs(u) is said to converge
weakly (or narrowly) to a Young measure o (notation: 8 = &o) if

timinf I3 (5) 2 13 (5)

for every g : {1 X S — [0, +00] such that g(w,) is l.s.c. on S for a.e. w € 1. (See
also (See also [4, Thm.2.2] for some alternative, equivalent definitions.)

PROPOSITION A.8: (a) Suppose that 6 6, in Rs(u). Then 6 = b.
(b) Suppose that 5, => 8, and that (8x) is tight.* Then there exists a subse-
quence (m) of (k) such that &, £ 5.

Proof: (a) Immediate by Lemma 4.7(b). By Theorem A.5 there exist a subse-
quence (m) of (k) and 8, € Rg(u) such that 6, X, 5.. Since 6,, = 6y, one finds
by an easy application of the dominated convergence theorem on one side and an
apllication of the weak convergence definition on the other, that I(6.) = I,(6)
for all g of the form g(w,s) = ¢(w)c(s), ¢ € Lk(),c € Cb(S). By use of the
separating subset (c;) once again, one proves easily that §,(w) = &o(w) a.e. O

*The latter provision is automatically fulfilled when S is a Polish space [2, Example 2.5].
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As an immediate consequence of Lemma A.7 and Proposition A.8 one has the
following (see [2] for a different proof of a similar result):

PROPOSITION A.9: Suppose that 6§, => 6, in Rg(u) and suppose that (5x)
is tight. Then
liminf 1} (6) > I} (o)

for every function g : {1 X § — (—o0, +00] such that for a.e. w,
g(w,") : § — (—00,+00] is Ls.c. at every point of supp 6y (w)
relative to U supp (8 (w)),
9(w,) : S — (—o00,+00] is measurable on S,
and such that for all k€ N
9(w,s) > ¢x(w) for all s € supp by (w)
for some uniformly integrable sequence (¢x) C L} (p).

Proof: For g as given, let a denote the above limes inferior. There exists a

subsequence (I) of (k) such that a = limy I;(&). Then, by Theorem A.8, there

exists a a subsequence (m) of (i) such that 6, —» . So Lemma A.7 gives

a> I3(&). o
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