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ABSTRACT 
Under suitable extreme point conditions weak converpnce can imply strong 

convergence in Ll-spaces [28, 31, 12, 26] Here a number of such result~ are gen- 
eralised by means of a unibying, very pneraI  approach using Young measures. 
The required results from Young measure theory are derived in a new fashion, 
based on pointwise averages [6], from well-known results on weak convergence 

of probability measures. 

1. I n t r o d u c t i o n  

Let  (f~, Y', •) be  a ~-f ini te  measure  space.  The  fol lowing basic  resu l t  for in t eg rab le  

r ea l -va lued  func t ions  is wel l -known in measu re  t h e o r y  [15, Thm.II .26] .  

Let (uk) be a sequence of integrable functions uk : n --* ]EL THEOREM 1 . 1 :  

such that 

Suppose that 

- -  k-~oo 

Then there is also s ~ r o n g  convergence in f l ( # ) :  

rnn In  [uk - .old~ = o. k --~ oo 
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The interpretation of this result is that the inequality involving the limes 

inferior prevents (uk(~)) from oscillating around ~o(w), a fact which forces strong 

and weak convergence in ~ t ( ~ )  to coincide. 
In more dimensions such oscillation- can be suppressed similarly by an extreme 

point condition for the values u0(w), so as to force equivalence of strong and weak 

convergence. This was shown recently by Visintin [31], who gave the following 

result (see also [28] for related well-known work in this direction): 

THEOREM 1.2: 

such tha~ 

Suppose ~bat 

T h e n  

Let (uk) be a sequence of integrable ~ n c t i o n -  uk  : f l  --~ ]1~. d 

Uo(CO) • aecl co {uk(~s) :/c • N} a.e. 

Um / a  I",~ - ,,oldi, = o. 
k-.,,oo 

Here SeA denotes the set of all extreme points of a set A; cl A denotes its 

closure; co A stands for its convex huH. 

As shown by Visintin [31], this result can be used to obtain existence results 
for partial differential equation, and to obtain results on well-posedness (in Ty- 
chonov's seuse) for c e r t . ,  v~a t iona l  problems [31]. 

A refinement of Theorem 1.2 was obtained by Rseluchowski [25], who used 
extremal faces and equivalent maximality with respect to ]exicographical orders 

in Rd; cf. [23]. A recent genera]isation of his result can be found in [8]. 

The following example, due to Visintin, shows that Theorem 1.2 is no longer 

valid in infinite dimension, [31, p. 445], even with constant functions uk. 

Example 1.3: Consider E := Z 2 x R.  Let (ek) be the sequence of unit vectors in 

e ,  and consider the constant function, ~ :  n - .  E given by .~(~)  := (ek, l /k) .  
Then (ek, l /k)  --* (0, 0) weakly in E, but not strongly, of course. Yet (0, 0) is an 

extreme point of the set aec| co{uk(w) : k • N}. 

Nevertheless, it is po6sible to extend the result to Bochner integrable functions 

taking values in a reflexive Banach space E, as was shown in [3]. For this purpose 

a notion of limited convergence in ~ ( ~ )  was introduced, which is weaker than 
ordinary strong convergence if E is infinite-dimensional, but which amounts to 

strong convergence if E is finite-dimensional. The proof in [3], based on using the 
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theory of Young measures [2, 4, 29], is rather more transparent than the proof in 

[31] (an interesting survey of these two proofs plus a number of related results was 

recently given by Valadier [30]). Recently, Castaing [12], following the pattern of 

[3], proved an extension of Visintin's result to a nonreflexive Banach space under 

a relative norm-compactness condition for the values (u~(w)). He also gave a 

related limited convergence result. Very recently, Rseluchowski [26] obtained a 

strong convergence result for the problem considered in [3], by strengthening the 

extreme point condition into a denting point requirement. His method of proof 
follows Visintin's [31]. 

In this paper I will demonstrate that all four results mentioned above, includ- 

ing the one by Rzetuchowski, follow from one central result, Theorem 1.4, to be 
stated below. 

Let E be a Banach space, equipped with a norm ]1" II. we sh~U ~ o  consider 
on E a given locally convex Hansdorff topology f which is not stronger than the 

norm topology, and not weaker than the usual weak topology or(E, E~). Here 

E S stands for the topological dual of E; the corresponding bilinear form will be 

denoted by < .,. >, as usual. 

Let (uk) be a sequence in the space ~l(/z) of E-valued Bochner integrable 

functions on (fi, ~r,/~). Recall that the dual o f / ~  (/z) for the usual Ll-seminorm 

can be identified with the set ~E~[E](/~) of all E~-valued scalarly measurable 

bounded functions on n (here both spaces are prequotient spaces) [18, VIL4 I. 
The sequence (ut) is said to converge weakly to u0 in ~ ( p )  if 

[ < u~(w) - uo(w), b(w) > p(dw) = lim 0 
k- - , oo  Jo 

for every b E ~B~[E](p). Note that then (uk) is relatively weakly compact, 
and this implies by [10, Thm. 1, Remark 1] that 

~( [[u~Ild p is equi-absolutely continuous with to respect P, .) 

and that for every e > 0 there exists a set F~ E ~r, p(F~) < -t-eo, such that 

supf llu lld  < 
k Jo \r~  

Recall that the definition of uniform integrability can easily be extended from 

finite to arbitrary measure spaces in the following way. A sequence (~k)  C ~ ( / ~ )  

is said to be ,ml fo rmly  Lutegrable if for every ~ > 0 there exists ~ E ~ ( / ~ )  
such that 

s u p /  I kld  < 
J{l÷~l>÷,} 
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In particular, it follows from the above that when (uk) C ~ ( ~ )  converges 

weakly, then (11,,,,11) is integrable. For by [15, H.19] there exists, for 
arbitrary • > 0, a constant ce with 

sup f II klld  < •/2. 
k JF,/2n{ll~,ll_>c,} 

Then ~b, := ¢,1r,/, satisfies the definition of uniform integrability for (ilukll). 
Next, recall from appendix A that the sequence consisting of the relaxations 

euh of the functions ut,  k E N, is said to be t/fltt [2] - with respect to the given 

topology r - if there exists a function h : fl × E --* [0, +co] such that 

(i) for a.e. w the function h(w, .) is inf-compact on Er (i.e., for every ~ E R 

the set {z E E :  h(w, z) _ 8} is f-compact). 

(ii) supk f~ h(w, uh(w))p(d~) < +oo. 

Here o u t e r  integration is used (d. Appendix A). 

Based on Appendix A, it is shown in section 2 that when (uk) c £~(p)  

converges weakly to uo and (euh) is tight for the topology r,* then not only the 
classical limit property 

uo(w) En~= 1 cl co{uk(w) : k _> p} a.e. 

holds (by Mazur's theorem), but also the following, much stronger property 

Uo(w) E c] co Ls,(uh(w)) a.e. 

which in case E is finite-dimensional can be strengthened further into 

co a.e. 

Here Ls,(X~) denotes the l imes super io r  (in the sense of Kuratowski) of a 

sequence (Xk) of subsets of E, defined by 

Ls,(Xk) := n~°_-x Clr (U~°_-pX~). 

When all sets X~ are singletons (say X~ = {z~)), I shall also write Ls,(zk) 

instea~l of Ls,({zk}), as was done above. 

The main result of this paper can now be stated: 

*Such tightne~ will hold automa~ically if E iJ reflexive and if T : o(E, E~); d. Remark 2.2. 
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THEOREM 1.4: Let (uk) be a sequence in , ~ ( p )  such t h ~  

=h -~ =o we=k~ in ~ ( ~ ) .  

Suppose that (e=~) is tight with respect to the topology r on E and that 

Then 

uo(co) E 9,cl co Ls,(m=(co)) &e. 

Euk ~ Eu0. 

Recall from Appendix A that  by its definition the weak convergence statement 
e=h ==~ e=o means the following: for every function g : fl × E --* [0, +c~] such 

that g(w, .) is Ls.c. on E ,  for a.e. w 

Zimi~._.= .I.[* g(~' "*(col)~'(~) >-/.* g(~,,,o(~))J,(,~). 
However, rather more c~u be said under the present circumstances: 

COROLLARY 1.5: Under the conditions of Theorem 1.4 the following are 

equivalent: i. The weak convergence statement 

euh ==¢" euo. 

//. The inequality 

]iminf,_.co/t~* g(co, uk(co)lP(dco) -->/~ g(co,uo(co)lP(dco) 

for every function g : fl X E -~ ( - c o ,  +co] such that for a.e. co 

g(co, .) is ,-L,.c. at ~o(co) reZ,t~e to {~k(co): k >_ 0}, 

g(co, .) is Borel measurable on Er, 

with the following bound from below 

g(co, z) _> -Cllzll + ,~(co) 

~or some C _> 0 and ¢ e ~k(~) .  

Proof: Of come, (~) ~==edlately ~ p ~ =  (i). The conver~ foUow~ by Proposi- 
tion A.9. [] 
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Consequently, for E := R d Visintin's Theorem 1.2 follows directly from The- 

orem 1.4: simply use g(~0, x) := - I x  - u0(t0)l in the above corollary, and note 

that  (euk) is automatically tight, since supk f h(., u~)d~ < +co  for h(w, z) := Izl 

(cf. Remark 2.2). 

2. P r o o f  o f  t h e  M a i n  R e s u l t  

In this section Theorem 1.4 will be proven, using the Young measure theory 

developed in Appendix A. 

Let me note beforehand that by the Pettis measurability theorem [16, II.1] 

there corresponds to each uk a null set Nk such that uk(f l \Nk) is a separable 

subset of E. Then, clearly, the closure of the linear span of all uh (t~\Nk), k G N U  

{0} is a separable Banach space, to which all considerations can be restricted. Of 
course, this means that  I may suppose the Bana~h space E itself to be separable. 

As a consequence, Eli.i[ is a Polish space, so Er is a Suslln locally convex space 

and B(EII.II ) = B(E~) = /)(E~) by [27, Cor. 2 of Thm. II.10] (or by an easy 
ad hoc proof). Thus, one need not distinguish between B(E,)  and B ( E H )  , or 

between P(E~) and P(EI[.II ). 
Recall that  the barycenter bar v E E of a probability measure v E P (E)  is 

defined by j .  

bar v := JR x/~ (dx) ,  

provided that it exists, i.e., provided that fB Ilxllv(dx) < +oo. The key to my 
proof of Theorem 1.4 is the following simple and intuitively appealing lemma [3] 
(under additional compactness conditions this result is well-known in Choquet 

theory). 

LEMMA 2.1 : Suppose that for v E Pi E) 

bar v G ae(rm d co sappy). 

Then v is the Dirac measure concentrated at the point bar v 6. E. 

Proof: For every closed convex D c E with bar v ~ D one has v(D) = 0. For 

if it were true that  v(D) > O, then surely v(D) < 1 (or else the barycenter 

of v would  Ue D ) .  Hence,  v = + (I  - where  v l ,  

P(E)  are defined as the normalized restrictions of v to D and E \ D  respectively. 

Thus, one would then find bar v -- v(D) bar vl + (1 - v(D)) bar ua. So by 

the extremality property of bar v this would imply bar v -- bar  vl .  But  this 

contradicts the assumption bar v ~ D, as bar vl belongs to the closed convex 
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set D. In particular, I conclude now that  every closed ball in E not containing 

bar v has measure sero under v. So the same holds then also for open balls. 

Finally, then, it follows by second countability of E H that the norm-open set 
E \ {  bar v} has measure sero under v. [] 

Proof of Theorem 1.4: Let (1) be an arbitrary subsequence of (k). By Theo- 

rem A.5 there exist a subsequence (m) of (1) and a Young measure 5. • ~E,  (P) 

such that  
K 

¢~tt m - ' ¢ '  ~ .  • 

By Corollary A.2 this gives 

(2.1) supp $,(w) C Ls,(t~n~(w)) c Ls,{u~{w)) a.e. 

By Proposition A.8, applied to the function g(w, x) := Hz]] (note that  the norm 

functional is ~'-l.s.c.), it follows that 

[ [ [  JlxllS.(~)(ds)l~(d~)-- I0(5.)< sup/,{e,.) < +oo. 
#Q # B  

Consequently, bar 6.(w) has to exist a.e., and of course now 

bar b,(w) • cl co Le,(uk(w)). 

Since Er is Suslin locally convex, there exists a countable collection (x~-} in E ~ 

which separates the points of E [13, III.31]. I apply Lemma A.7 to g'(~, s) :--- 

1~(~) < x,x;. > ,  for a r b i t r ~  B • r and i • N .  A~ (11"~11) is un~orn~y 
integrable (section 1), it is easy to see that both ~/and - ~  satisfy the conditions 
of that  lemma. Therefore, 

fl~t "-* O0  

By the weak convergence of (uk) to uo this gives 

f f, , f, 
so, B being arbitrary, I conclude that for every 3" 

t t < b ~  6 . {~ ) ,~  i >=< ~o(~),~; > a.e. 

Because (s~.) separates the points of E, it follows that 

bar ~,{~) = ~o{~) a.e. 
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[Let me pause briefly to observe that by (2.1) this means that 

~o(~) E cl co L s , ( ~ ( ~ ) )  Le. 

and for finite-dimeusional E by [24] even 

Uo(~) E co Ls,(u,,(~0)) a.e. 

as I already stated before.] 

By Lemma 2.1, in view of the extremality hypothesis, the above implies 

~. (~ )  = •.o(~) a.e. 

It has now been established that every subsequence (t) of (/c) contains a further 
subsequence (m) such that 

K 
• urn --~ • s o ,  

whence a/ortiori 

~Um ~ EUO 

by Proposition A.8. Thus, the sequence (euh) as a whole must converge weakly 

to eu0. [] 

An interesting open question is whether the weak convergence result of The- 

orem 1.4 can be strengthened into a result on K-convergence: 
K 

~uk --4 •1/,o ° 

Remark 2.2: In case E is reflexive and r = o(E, El), two improvements can be 
introduced in Theorem 1.4 and its corollary. 

First, in this case tightness is an automatic consequence of the uniform inte- 

grability of (llukll) (which, in turn, is a consequence of the weak convergence of 

(uk) to no; cf. section 1). For obviously 

s~p Ih(eu~,) =-- sup / [[u~Hd # < +co 
k J N  

w ~  hold for h(~, =) "= tl=ll, which is then inf-compact in ~. 

Second, Corollary 1.5 can then be strenghtened as follows: Instead of 

g(~,.) is Ls.c. at ~o(~) relative to ( ~ ( ~ ) "  k _~ 0}, 

it is enough to require 

g(w, .) is sequentially Ls.c. at no(w) relative to {ttk(w): k ___ 0}. 

Indeed, since E is a Suslln locally convex space, E ~ is separable for o(E l, E) 
by [13, III.32]. So by ~mulian's theorem [17, 3.2] it follows that sequential and 

ordinary compactness in E~ are the same. Therefore, for every • > 0 the function 

g~ := g + •h saZisfies the conditions of Lemma A.7. An obvious limit argument, 

in which • goes to sero, then lea~  to the desired result. 



Vol. 75, 1991 STRONG AND WEAK CONVERGENCE 29 

Remark 2.3: When 1" is the norm-topology on E (as is the case for finite- 

dimensional E), it is interesting to observe that  the convergence result e,~ h 

eu0 of Theorem 1.4 is equ iva l en t  to 

(uh) converges locally in measure to uo. 

This is seen by applying the definition of weak convergence to the function 

01 if w E D andll:=- ~(w)ll _> 
g(w, z) := otherwise 

for arbitrary D G ~r,p(D) < +00, and e > 0. This gives the desired local 

convergence in measure: 

l imsupp( {w  E D :  -  (w)ll > <_ o. 
Jk: 

Conversely, given such local convergence in measure, every subsequence of (uk) 

has s subsequence converging a.e. to Uo, which makes the proof of lower semi- 

continuity for the desired integral functionals a simple application of Fatou's 

lemma. 

Remark 2.4: Remark A.6 implies that  Theorem 1.4 remains valid if one works 

with different, w-dependent topologies r,~ on E (which itself may have w-dependent 

norms), provided that  E is a separable Banach space, and for each w the topol- 

ogy r~ on E is not weaker than the weak topology and not stronger than the 

norm topology. 

Theorem 1.4 can immediately be generalized into a version for a sequence of 

8calarly integrable functions (uk). Suppose that  E is a Banach space with norm 

[[" I[ and with a locally convex Snslin topology •, not stronger than the norm 

topology and not weaker than the topology e (E ,  Es). Then by [13, III.32] the 

dual E '  of E~ has a countable subset (z~.) which is cr(E', E)-dense in the unit ball 

of E ~. Let / ~  (/~)[E ~] be the set of all 8calarly integrable functions u : fI ---, E,  

i.e. such that  

< u(.), z' >E ~k(~)  for every z'  E El. 

THEOREM 2 . 5 :  

j G N ,  B E  Y" 
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Suppose that (uk) is tight with respect to the topoloKy r on E and that 

=o(~) ~ Oocl co ~ , ( . k ( ~ ) )  =e. 

(2.2) 

Then 

r.,(=~(=)) v either norm-~p=~=bZe o ,  , - c o = p a t  ~.e. 

E=~ ====~E=o. 

Proof: The proof is almost the same as that of Theorem 1.4. The only read 

difference lies in the barycentric argument involving Lemm& 2.1. Here existence 

of the barycenters bar 6.(¢0) can only be guaranteed thanks to the provision 
(2.2) (this is the sole ra ison d ' e t r e  for that condition), whereas in the proof of 
Theorem 1.4 one could assume without loss of generality that E is separable. 

COROLLARY 2.6: 
condition 

Under the conditions of Theorem 2.5 and the additional 

(ll=,lt) is un~or=t.r~,te~abZe 

the following are equJvaJent: 
i. The weak convergence statement 

Eat ===~E=o 

i/. The inequa//W 

u..,~k_.o, jof* g(~'"*(~))J'(~) - > / j  g(~,,,o(~)),=(~) 

for every funct/on g : f l x  E --, (-oo,  +oo] such that for ~e. 

g(~,.) is ,-Ls.c. at ~(~)  ~lat i~ to (~k(~): k _> 0}, 

g(m, ") is BoreI measurable on Er, 

witl~ the following bound ~om below 

g(~, =) > -CIl=ll + ¢(~) 

for some C > 0 and ¢ E P~(/~). 
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The proof of this corollary is quite analogous to that of Corollary 1.5, and will 
be omitted. 

3. App l i ca t i ons  

In this section I shall apply Theorems 1.4 and 2.5 to problems considered by 
myself [3], Castalng [12] and Reei|uchowski [26]. 

My first application is a refinement of the infinite-dimeusionx] extension in [3, 
Thm.1] of Visintin's result. 

PROPOSITION 3.1 : Suppose that the Banac~ space E is reflex/re, and Jet (uk) 
be a sequence in ~ l  (p) such that 

~k ~ ~o w e ~ v  in ~ ( ~ ) .  

Suppose tfiat 
,,o(,,,) e a.cl co  Ls.(,~,(,,,)) a... 

Then 
P 

Jo g(,,,, ,,,,(,,,) - , ,o(, , , ) )~,(~) = 0 

for every F X B(E~)-measursbje/unc~ion g : flx E -~ R such that [or a.e. 

g(,,,, o) = o, 

wlth the fo//ow/ng bound: 

Ig(,,,, =)1 -< Oll=ll + ,/,(,,,) 

for some C > 0 u d  ¢ • ~k(/z). 

Proo[: Take r := ¢(E,E'). In view of Remark 2.2 the result follows directly 
from applying Corollary 1.5 to both g and -g .  [] 

In comparison to [3], the following improvements have been made: (i) the 

extreme point condition is slightly relaxed (this possibility, which is implicit 
in the proof of [3], was already signaled by Vxl~Uer in [29, thm.21]), (ii) the 
continuity condition has been locxUsed. 

Next, I show how Theorem 1.4 implies a very recent result by Reeiuchowski 
[26]. (His method of proof follows Visintin's original proof in [31].) 
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Recall that for D c E an element Zo E D is said to be a dcr~tir~g point for D 
[16, p. 270] if 

Zo ¢ c l  co (D\B(zo; ¢)) for all ~ > 0. 

Here B(z0;e) := (z E E :  IIz - =oil < ~}. The collection of all denting points of 
D c E is denoted by OdD; it is simple to show that always 

OdD C O~D. 

PROPOSITION 3.2: Suppose that the Banach space E is reBexive. Let (uk) 

be a sequence in ~ ( ~ )  such that 

in 

Suppose that 

u0(w) E OdCl CO (Uk(W) : k ~_ 0) 

Then strong convergence in ~.~ (p) holds: 

&e. 

Only the first part of the following characterization of denting points will be 
used in the proof of the above result (the second part serves as a completion). 

See also [14, Prop. 25.13], [23,30]. 

LEMMA 3 . 3 :  (@ Let D C E, zo E D. Then zo E 8d(D) implies that the 

identity mapping ~ : E¢ --* Ell.if IS continuous at Zo, relative to D. 
(b) Let D c E be closed convex, zo E Oe(D). Suppose that D N clB(zo;eo) is 

weakly compact for some e 0 > O. Then the converse of the implication in a is 

also true. 

Proof: (a) Let e > 0 be arbitrary. By dentability, it follows from the Hakn- 

Banach theorem that there exists an open half-space H c E such that H ~ Zo 

and E \ H  D D\B(zo;  e). Evidently, this means that [[z - zol[ < e for all z in the 

relative weak neighborhood H N D of zo. 

(b) Let 0 < e < e0 be arbitrary. Define Do := D N cl B(zo;e); then Do is 

weakly compact; also, Zo E 8eDo. By [14, 25.13], zo has, relative to Do, a 
weak neighborhood basis consisting of open half spaces. By the continuity prop- 

erty of the mapping ~, the point zo has, relative to D, a neighborhood basis 
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which consists of weakly open sets. Hence, there exists an open half space H0, 

containing zo, such that  Ho N Do c B(zo;e) fl D. The result is now a direct 

consequence of the following observation: if z E H0 fl D h u  I1= - = o l l >  ~, then 

y :-- ~'o + ~ ( = -  =o)/11=- =oil beiong, to Ho n (Do\B(=o, ~)) (since such ~ cannot 
exist, it follows that  D\B(zo ,  e) is contained in E~Ho). [] 

Proof o£ Proposition 3.2: . Corollary 1.5 can be applied, with • = or(E, ~'°), for 

by Remark 2.2 the tightness condition holds and the extreme point condition is 

fulfilled, thanks to the denting point condition for the values of no. By thi~ corol- 

lary, applied to the function g(~,z)  := -[[z - ~0(~)11, the result follows. (Note 

that  by Lemma 3.3a g satisfies the local lower semicontinuity of Theorem 1.4). 
r3 

In Proposition 3.2 it is not enough to have the denting point condition 

no(,,,,) ~ a,~cl co LSo(U,~(,,,,)) ,.e., 

as wa~ pointed out to me by M. Valsdier in response to am earlier, erroneous 

version of that  result. For instance, consider t ~ with the basis of unit vectors (ek). 

Then for constant functions ~ h  --- 0 and ~h+x  - eh one h u  weak convergence 

to 0 - assuming the measure space is finite - and even LSll.ll(Uk(~)) = {O} a.e.; 

yet strong convergence does not hold. This example comes from [1]. 

Next, I state a new result for a separable Banach space E,  equipped with a 

topology f which ie not weaker than ~(E,  E*) and not stronger than the norm- 

topology. It includes also a result of C u t a i n g  [12, Thm.2.1]. Before stating 

it, I recall that  D c E is said to be r-eomlmet w/tA respect to closed balls if 
D N cl B(0;~) is r-compact for every fl >_ 0. 

PROPOSITION 3 . 4 :  

Suppose that 

and 

,,h --, ,,o we.my ~ .Ci,(~), 

uo(,,,) ~ a,,cl c o  I,,,.(uk(,,,)) a.,. 

Then 

cb{,.,k(~,) : k ~ I,,T] is r..comp~t with respect to doses b a ~  Le. 

, . ~ ® / o  g(,,,, ,,,.(,,4 -,.,o(,,,))J,(,~) = 0 
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for every jr x B(Et)-measurable function g : fl X E --, R such that for a.e. co 

g(w) is r-continuous at Uo(co) reJatJve to {uk(co): k _> 0}, 

g(co,0) = o ,  

with the following bound: 

Ig(co, =}1 -< Cll=ll +,~(co) 

for some C >_ 0 and ~b • ~1 .  

Proof: Apply Theorem 1.4. Define 

S I1=11 if = • cl{=~(co) : k • N},  h(co, X) 
t -l-c~ otherwise 

Then for every co the function h(co, .) is inf-compsct (note that for every fl E R 

the set {z • E : h(co, z) < b~} is compact, being the intersection of the set 

cl{uk (co}: k • N} and cl B(0; fl)). Hence, the tightness condition of Theorem 1.4 

is fulfilled because of 

sup xh(,~,,,,) = s u p [  II,.,klld~ < +oo. 
kEN k JQ 

The remaining details, which go as in the proof of Proposition 3.1, are left to 

the reader. [] 

Note that in [12, Thm.2.11 compactness is required instead of of compactness 
with respect to closed balls, and E is supposed to be separable. Moreover, some 

measurability and convexity conditions used in [12] have been removed. 

I now discuss an application to the ~alarly integrable case, which captures [12, 

Thm.2.2]. Here E is the dual of a separable Banach space F; the norm on E is 

the dual norm with respect to F. Let us equip E with the topology r of uniform 

convergence on compacta (since the closed unit ball U of E is metrizable and 

r-compact, Er is a locally convex Suslin space). Note that on U the topology r 

equals the weak star topology a(E,  F). 

PROPOSITION 3.5: Let (uk) be a sequence Ju ~l{p)[F]  such that 
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Suppose that 

u0(w) E a,c] co LS.(E,F)(Uk(W)) 

and th=t for some scnd~r function g E/~IR(/~ ) 

Then 

6uk ~ Eu o. 

a.e. 

a.e. 

where 

[] 

Finally, I give the following regularity result (in the sense of well-posedness 

la Tychonov). This result, stated for a Bausch space E, generalizes [31, Thm.8]. 

THEOREM 3.6: Let f : fl x E ---* [0, +col be ~r X B(E)-measurable and such 
that for a.e. co the function f(oa, .) is a(E, E')-inf-compact and strictly convex. 

Also, let b E ~E°°,[E](p) be given, and consider the minimization problem (e): 

rain J(u), 

f f 

Suppose that f has the following superllnear growth property: for every E > 0 
there e ~ t s  ~° ~ ~1(~),  ~, >_ O, such that for ~e. 

II~II -- ,b,(o~) ~p~es ef(co, z) ~_ II~II 

Then the inl~mum value ~ o[  (P) is attained by a unique u. E ,~.IE(p). Moreover, 
if ~ < +co then for any minimizing sequence (uk) for (P) the following strong 

convergence results hold: 

f llu~(o4 - u.(o411~(~) ~ o, 

The result then follows immediately. 

Proof: Apply Theorem 2.5 with r := a(E, F). By the Alaogh-Bourbaki theorem 

the set cl co {uk(w) : k _> 0} is r-compact for a.e. ca. Hence, (e=k) is tight, as is 
seen by using h given by 

S o • -- ~ ~l ~o (u~(~) : k ~ N ) ,  
h(~o, x) 

l ¢co otherwise. 
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Proof: If L = +oo, every u E L1h(p) is optimal. So suppoee from now on that 
L < +oo. Let (uk) be any minimiring sequence, and let (I) be any subsequence 
of (k) (so (q)  is also minimiring). Then by [6, Thm.4.11 (1) contains at least 
one subsequence (m) such that (u,,,) converges weakly to some u, in b;(lr).* 
Moreover, since J is evidently strictly convex and strongly Ls.c. on l:(lr), it 
must sleo be weakly Ls.c. This shows that L = liminf, J ( h )  1 J(u,). Note 
that the minimiring u. must be unique (by strict convexity). 

But one gets more than that: the same reasoning leads to 

for every B E 3. By the obvious convergence 

it a h  foIlows that (f (., u,,,(.))) converges weakly in L1g(p) to f (., u. (.)). So now 

For a.e. w it is evident, by strict convexity of f (w, -), that (u,(w), f (w, u, (w))) 
is an extreme point of the epigraph of f (w, a), which itself is claeed and convex. 
Thus, one certainly has 

Using Theorem 1.4, I now conclude that every subsequence (I) of (k) has a further 

subeequence (m) for which 

and this implies the desired strong convergence result of (uk, f(., uk(=))) to 

(u*, f (a ,  u*(.)). 0 

*~hia genecdhea 8 larult known u Di&elBa theorem; the prod in 161 ia again baaed on K- 
conveqenca - but of another type. 
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A p p e n d i x  A. A N e w  I n t r o d u c t i o n  to  Young M e a s u r e  T h e o r y  

In tkiz appendix I present basic Young measure theory, in particular the weak 

convergence topology and the notion of tightness, from a new perspective: I de- 

rive these results from the classical theory for weak convergence of measures by 
means of K-convergence,  a general, unifying notion of convergence for scalarly 
measurable functions introduced in [6,5]. Young measures are scxlarly mea- 
surable functions, taking as their values ordinary probability measures. Since 

K-convergence concerns the po in twise  convergence of arithmetic averages of 

Young measures, this has an obvious advantage for the reader: only some basic 

familiarity with weak convergence of probability measures [11,15] is expected, 

instead of knowledge of sizeable parts from functional analysis and measure the- 

ory. 
The framework of this appendix consists of the or-finite measure space (fl, jr/z) 

encountered in the main text, and of a completely regular Suslin space $ (recall 
that a Suslin space is the continous image of some Polish space [13,15,27]. The 

set of all probability measures on (S, B(S)), is denoted by P(S); here 8(S) 

stands for the Borel ~-algebra on 5. Recall that the support supp t of t, E P (S) 
is defined as the intersection of all closed sets F c S with t (F) = 1. Recall 
also that a sequence (or generalized sequence) (vt) in P(S) is said to converge 

weak ly  (or aarrowly) to the probability measure v0 (notation: tk =~ to) if 

fsod., =fsodto for every c E Cb(S). k--*oo 

Here Cb(S) stands for the set of all bounded continuous real-valued functions on 
S. The following result is a consequence of the definition of the weak convergence 
topology. 

PROPOSITION A. 1: Suppose that uk =~ u0/n P(S). Then 

~ " ~  f s  q dv'* > / s  q .oo 

for every measurable function q : S --, ( -co ,  +oo] such that 

q is l.s.c, at every point of supp Vo 

relative to U~=0supp tk, and 

q is bounded from below by a constant. 
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Proo[: Define So := U~= o supp vk. Observe that SO is a completely regular 
Hausdorff space for the relative topology. Let q : So --* ( -co ,  +co] be the Ls.c. 

hull of q relative to So, i.e. the largest l.s.c, function on So nowhere larger than 

q. Then by the fact that So D supp vk, k E IN u {0} and by [15, III.55] 

By hypothesis, vo({S E So: q(s) = q(s)}) = 1. This leads to 

fso q dvo = fso q dt'o = fs  q dvo, 

since So D suppvo. Thus, the inequality has been proven. [] 

COROLLARY A.2: Suppose ~hat v~ =*. vo in P(S). Then 

supp Uo C Ls(supp vk). 

Moreover, if[or some sequence (Iri~) c P(B) 

1 n 
-- E lrk =~ vo, 
Yt 

then 

k = l  

suppvo C Ls (suppa'k). 

Proof.. Define Sp := U~°=vsupp vh. Apply Proposition A.1 to the 1.s.c. function 

qp : S ---, {0, +co}, p E N, given by 

0 i f s E  clSp, 
: =  

+co otherwise. 

This gives f s  qv : dvo = 0. Therefore, v0( cl Sp) = 1, which amounts to suppv0 c 

clSp. 

Secondly, for ( 'k)  as stated one has E~=p ~ r k / ( n - p +  1) =~ v0 for every fixed 

p E N; hence, just as proven above, 

oo supp Vo C cl Uh= p supp fk, 

since supp(~-~.~=p ~k/ (n  - p + 1)) C cl U~=~ supp fk. The desired result then 

follows directly. [] 
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Let me make the following observation: Because the space S is completely 

regular, the functions in Cb(S) separate the points of P(S)  [15, III.54]. Since 

P (S) is also Suslin [27, Appendix, Thm.7], there exists a countable subset (cj) 

of Cb(H) whose functions still separate the points of P(H) [13, III.31]. Prom the 

same fact it follows by [15, III.66] that  every weakly compact subset of P(S)  is 

metrizable, whence sequentially weakly compact. 

In the terminology established by LeCam [21], a sequence (v~) in P(S) is said 

to be tight if for every e > 0 there exists a compact subset K~ of S such that 

supv~(S \Ke)  < e, 
k 

or, equivalently, if there exists a function h : S --* [0, +oo] such that 

(i) h is inf-compact on H, 

(~) supk f s  h dvk < ÷oo. 
The following result can be found in [11, Appendix III, Thm.6] (it also follows 

by [15, III.55], taking into consideration the above remark on sequential weak 
compactness). 

THEOREM A.3 (PROHOROV): Suppose that the sequence (vk) in P(S) is 
tight. Then there exist a subsequence (m) o[ (k) and a probability measure 
~,. ~ P(S) suc~ that  v.~ =~ ~,. .  

A Young meo~ure with respect to f~ and S is defined to be a transition prob- 
ability with respect to (f~, jr) and (S, ~)(S)) [22, IlI.2]; that is to say, a Young 

measure is a function 6 : ft --* P (S) which is measurable with respect to the 
a-algebra jr on f~ and the Borel a-algebra on P(S)  corresponding to the weak 

convergence topology (the equivalence of this with the usual definition as in [22] 

follows by an easy monotone class argument; cf. [13, p. 103]. The set of all 

Young measures with respect to f~ and S is denoted by •s (P). Particularly im- 

portant  are those Young measures which are associated to measurable functions 

u : f~ ---, H. In such a case the corresponding Young measure is denoted by eu; it 
is given by 

eu(w) := Dirac measure at u(w). 

The Young measure eu : f] --* P(H) is called the r e l a x a t i o n  of the measur- 

able function u : • ---* B (the seminal idea of completing the class of ordinary 

measurable functions in this way is due to Young [32]). 

In this paper weak convergence of Young measures will come about  as a 

byproduct  of a new, stronger notion, called K-convergence. The origins of this 
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notion lie in the following deep result by Koml6e [20], which is valid for an 
arbitrary measure space (fl, jr, p). 

THEOREM A.4 (KOMLSS): Suppose that (~k)/s a sequence/u £~t(P) such 
that 

,up f 14'~,1 d~ < +co. 
k J f l  

Then there exist a subsequence (m) o/(k) and an/utegrab/e/unction ~. e / ~ t ( # )  
• .ch that Vor every .ub~uence  1.~) o~ (m) 

! ~,,,,,1,,,) ..., ,.1,,,) a.e. 9q, 
i----1 

(the exceptiona/nu//set may depend upon the subsequence considered). 

Following [6], a sequence (6h) in ~s(P) is said to K-converse  to the Young 
measure 6o (notation: 6~ g_. 6o) if for every subsequence (~) of (k) 

n 
-1 ~ , , ( ~ )  ~ ~o(~) a e 
n 

iff i l  

Note already that this entails 

supp60(w) C Ls (suppSk(c0)) s.e. 

by Corollary A.2. Other elementary consequences of K-convergence, connected 
with weak convergence in ~s(p), will be given shortly. 

Following [6] a ,equence (ek) in ~s(~)  is ,~d to be tlsht ( 2  B-tisht [29]) 
if there exists a function h : n × S --* [0, +oo] such that 

(i) h(c0, .) is inf-compact on S for a.e. w, 
(ii) supk I~,(6k) < +oo. 
Here the following shorthand notation is used: 

h(,,,,.) 

where f~ denotes ou te r  in tegrat ion,  which is recalled next: 
For any - possibly nonmeasurable - function ,p : fl ~ (-oo, +oo] the ou te r  

integral  of ¢ over (fl, jr, p) is defined by: 

L e . ) .  
J n  Jn 
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(A.1) 

and 

Here the infimum over the empty set equals +oo by definition. 
Therefore, part (ii) of the above definition amounts precisely to the following: 

there exists a sequence (~bo,~) in £~(~)  such that for every k • N: 

0<_ [ h(~,~) ~(~) (~)  _< ~o,~(~) a . e .  
Js  

? 
(A.2) sup [ ~o,~ d~ < +oo. 

b J ~  

Let me note as an aside that an equivalent definition of this form of tightness 
can also be given. Namely, by [19, Thm.2.4] (8~) is tight if and only if for every 

> 0 there exists a compact-valued multifunction re : fl --* 2 s such that 

s u p / *  5~(oJ)(S\F~(oJ))~(dw) < ~. 
k J o  

The following extension of Prohorov's Theorem A.3 to a criterion for relative 

compactness for K-convergence in ~s(~)  was obtained in [6, Thm.5.1]. It forms 
a most important tool in this paper. 

THEOREM A. 5: Suppose that the sequence (6k) /n ~s  (~) is t~ht. Then 
there exist a subsequence (m) of(k) and a Young measure 5. • £s (~)  such that 
8,, ~6, .  

Proof: Let (cy) c C~(S) be the separating set for P(S) defined before. By the 
fact that (f], jr, ~) is u-finite, there exist strictly positive functions in ~t(/z).  Let 

be one such function. For 3", k • N I define 

~.~(~) := ~(~) ~ ci(s) 8~(~)(d,), 

and I take (~o,k) as in (A.1)-(A.2). Then it is clear that for every j • N u (0} 

,up [ I~;,~l d~ < +co. 
k Jf~ 

This makes it possible to apply Theorem A.4 repeatedly in a diagonal procedure 

(observe here the importance of the subsequence character of Theorem A.4). 

This yisXd,, su~.q~e~ce (,~) of (k) and.  ~eque~ce (¢~,.) c ~h(~) such that 
for every j • N U {O} and every su~equenee (.~) of (~) 

n 

1 ~ *,,.',m, (co) --~ ~6y,. (w) x.e. 
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Now this entails that  for every subsequence (m~) for a.e. to: 

(A.3) 
1 f 

Umsnp - !  Cto,,) 8.,(to)Cd,) _< +o,.Cto) < 
n - = , o o  1% d--~l J s  

and 

(A.4) n-*~lim -nl ~ . = / s  cy(s) 8~, (to)(~} = ~y,. (to}l~(to} 

for every 3" E N (here (A.3) follows by (A.1), and the identity results from 
dividing by ~(to) and the above). Let us see first what this gives if (m) itself is 
considered as the subsequence in question. Fix to E f i  outside the exceptional 
null-set. Define (v,,)  c P ( S )  as follows: 

n 
1 
)% 

) r i l l  

Then (v,)) is tight in P ($), according to (A.3). By Prohorov's Theorem A.3 there 
exist at least one weakly convergent subsequence of (vm), and a corresponding 
limit point v..  Then by (A.4) 

(A.5) ~ c~-dr. = ~.,, ( t o ) f o r  every i ~ N. 

But by (A.4) for any other weakly convergent subsequence of (vn) the corre- 
sponding limit point will also have to satisfy (A.5). Since this equation uniquely 
determines the probability measure v., it follows easily from (A.3) by Prohorov's 
theorem that the whole sequence (vn) converges weakly to 6.(w) := I). E P(S). 
By taking for 6. (to) a fixed probability measure if to belongs to the exceptional 
null set in (A.3)-(A.4), I obtain the desired Young measure 6.. This whole ar- 
gument can be repeated ver~tim if I start out with an arbitrary subsequence 
(rr~) of (m). Note that, except for a possible shift of the exceptional null set (for 
which the statement of the theorem allows), the crucial relation (A.5) st/If will 
hold, regardless of the choice of subsequence. [] 

Remark A.6: From the pointwise nature of the above proof it is clear that  in 

Theorem A.5 one can even allow for varying, w-dependent topologies on S (and 
hence w-dependent weak topologies on P(S)).  Of course, the sequence (cy) can 
then also vary with to; cf. [6]. 
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For any function g : f lx  S --, ( - so ,  +co], measurable in its second variable and 
bounded from below by some function in ~k(p) ,  the o u t e r  in tegra l  func t iona l  
I~ :  ls(/~) --* ( -0o,+oo]  is defined by: 

I~(5) := f~*l/s gCw's) 6Cc°)(ds)il~(d'w)' 

and in case outer integration can be replaced by ordinary integration I shall 
simply write lg(~). 

An easy property of K-convergence is contained in the following Fatou-like 
]emma: 

LEMMA A . 7  (FATOU'S LEMMA FOR K-CONVERGENCE): 

8k K_~ ~o in ~s (i~). Then 

~ n = f  r . (~)  _> r~ (~0) 
/ r - -+oo 

for every function g : f l x  S ---, ( -co ,  +co] such that for a.e. w, 

g(=, .): s - ,  ( -eo, +col 

~elati .  to u~_0supp(8~(~)), 

is Ls.c. at every point o~upp 6o(w) 

Suppose that 

g ( ~ , . ) :  s - .  ( - co ,  +col  /~ m e ~ a b l e  on s ,  

Hence, by uniform integrsbility, it follows from the dominated convergence the- 
orem that 

1 n 

n 

n---+ oo  n 

Proof: There exists a subsequence (1) of (k) such that the limes inferior, say 
a, equals ~ I~(51). Application of Koml6s' Theorem A.4 to the sequence (~i) 
gives that  there exist a subsequence (m) of (l) and ~. E / ,h  such that 

and such that 

for some un~orm~ integrable sequence (~bk) C ~k(Iz).  
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so it follows that 

- f  ~.d~= lira 1_ " o= ,=_oo n m~=l / ~  (g,~, - ~b.)d #. 

By Proposition A.1 

~ = ~ g ~ ( w )  > go(w), a.e. 
f f l , - -~ oo  

so by (A.6), 

l i m i n f -  1 ~.(gm(w)-~m(w)) > g0(w) - ~,(w) z.e. 
n ' ' +  OO n 

m- - - -1  

Here gin(w) := fs g(w,s)6m(w)(cLs) > ~m(w). Therefore, by Faton's lemma 

(it can be seen from the definition that  outer integration is subadditive, and that  
Fatou's lemma - in the present orientation - continues to be valid). [] 

In the remainder of this appendix I connect K-convergence in Rs(#) with 

the weak convergence topology for Young measures [9,2,7], which is defined as 

foUows: x sequence (or g e n e r ~ e d  seqnence) (~k) in ~s (~ )  is s~id to converge 
w e a k l y  (or n a r r o w l y )  to a Young measure 60 (notation: 6k ==~ 6o) if 

U m ~ Z ~ ( ~ )  > ~(~o) 
J~--+oo 

for every g :  t~ × ~ --* [0, +c0] such that  g(w, .) is Ls.c. on S for a.e. w E t~. (See 
a~so (See also [4, Thm.2.2] for some alternative, equivalent definitions.) 

PROPOSITION A . 8 :  (a) Suppose that 6k K 6o /n • s (# ) -  Then 6k ~- 6o. 
(b) Suppose that ~k ==~ 60 and that (6k) is ti@t.* Then there ex/sts a subse- 

quence (m) d (k) such that  6m K_, 60" 

Proof: (a) Immediate by Lemma 4.7(b). By Theorem A.5 there exist a subse- 

quence (m) of (k) and 6. E )~s (#) such that 6m K_. 6.. Since 6m ==~ 60, one finds 

by an easy application of the dominated convergence theorem on one side and an 

ap]]ication of the weak convergence definition on the other, that  Ig(6,) - Ig(8o) 

for a~ g of the form g(w, s) = ~(w)c(s), ~ E ~l( /z) ,  c E Cb(S). By use of the 

sep=~ating . u ~ t  (ci) once a g ~ ,  one prove, eas~y that ~.(~) = 6o(~) a.e. [] 

*The latter provision is automatically fulfilled when ~q is a Polish space [2, Example 2.5]. 
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As an immediate consequence of Lemma A.7 and Proposition A.8 one has the 

following (see [2] for a different proof of a similar result): 

PROPOSITION A.9: Suppose t h ~  6k ~ 6o in £s(l~) and suppose that (6k) 

/s tight. Then 

k--* oo 

for every functio,  g : fl X S --* ( -co ,  +co] such that for a.e. w, 

g(w, .): S --* (--co, +co] is/.s.c, at every point of supp &o (W) 

relative to U~°=0supp (6k(co)), 

g(<,o,-): ,5' -,+ ( -co,  +co] is measurable on ,..q, 

and such tha~ for all k E N 

g(w,8) > ~h(w) for all s E supp6k(w) 

/or some unJformJy integrabJe sequence (~k) C ~. k (I~) • 

Proof." For g as given, let a denote the above limes inferior. There exists a 

subsequence (l) d (k) such that a = ~ I;(+1). Then, by Theorem A.8, there 

exists a a eubsequence (m) of (1) such that 6m ~ 60. So Lemma A.7 gives 
> []  
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